PDFs with a quantum computer

from arXiv:2011.13934

Stefano Carrazza

18th January 2021, QTI TH meeting, CERN.

Università degli Studi di Milano, INFN Milan, CERN, TII

Introduction

Parton density functions

PDFs are essential for a realistic computation of hadronic observables:

$$\underbrace{\sigma_X(s, M_X^2)}_{Y} = \sum_{a, b} \int_{x_{\min}}^1 dx_1 dx_2 \underbrace{\hat{\sigma}_{a, b}(x_1, x_2, s, M_X^2)}_{X} f_a(x_1, M_X^2) f_b(x_2, M_X^2)$$

PDFs are extracted by comparing theoretical predictions to real data.

 $X \otimes f \to Y$

PDF determination is a regression problem.

Can we parametrize PDFs using a quantum computer?

Can we parametrize PDFs using a quantum computer?

How?

Using variational quantum circuits and data re-uploading algorithms:

Problem is to identify a "circuit architecture" which:

- predicts PDF values,
- is trained with classical optimizer (VQC).

Why qPDF?

- Proof-of-concept, study new architectures.
- **2** Obtain a hardware representation (analogy with GPU and FPGA).
- 3 Lower power consumption fits.

Why qPDF?

- Proof-of-concept, study new architectures.
- **2** Obtain a hardware representation (analogy with GPU and FPGA).
- 3 Lower power consumption fits.

NISQ era Warning...

- Quantum devices implement few qubits, noise is a bottleneck.
- We can simulate quantum computation on classical hardware.

Building a qPDF model

- Define circuit Ansätze
- Test it against reference PDF data.
- If convergence is achieved, perform a global PDF fit.
- Test model in a quantum device.

Summary of techniques

Circuit

$$\mathcal{U}(\theta, x) \left| 0 \right\rangle^{\otimes n} = \left| \psi(\theta, x) \right\rangle$$

Hamiltonian

$$Z_i = \bigotimes_{j=0}^n Z^{\delta_{ij}}$$

Measurement

$$z_i(\theta, x) = \langle \psi(\theta, x) | Z_i | \psi(\theta, x) \rangle$$

Relation to PDF

$$\mathsf{qPDF}_i(x,Q_0,\theta) = \frac{1-z_i(\theta,x)}{1+z_i(\theta,x)}$$

We consider one global Ansatz with different building blocks

We consider one global Ansatz with different building blocks

Weighted Ansatz

$$U_w(\alpha, x) = R_z(\alpha_3 \log(x) + \alpha_4) R_y(\alpha_1 x + \alpha_2)$$

Fourier Ansatz

$$U_{f}^{(\alpha,x)} = R_{y}(\alpha_{4})R_{z}(\alpha_{3})R_{y}(-\pi/2\log x)R_{y}(\alpha_{2})R_{z}(\alpha_{1})R_{y}(\pi x)$$

Linear and logarithmic scale

Both Ansätze include $(x, \log x)$ dependency.

Stage 1: Ansatz tuning

Simulations with **Qibo**

Weighted

Single flavour fit		Multi flavour fit	
Layers (Params)	χ^2	χ^2	Layers (Params)
1 (32)	28.6328		1 (32)
2 (64)	1.0234	-	-
3 (96)	0.0388	0.1500	2 (72)
4 (128)	0.0212	0.0320	3 (112)
5 (160)	0.0158	0.0194	4 (152)
6 (192)	0.0155	0.0154	5 (192)

-			
_		 0	

Single flavour fit		Multi flavour fit	
Layers (Params)	$\chi^2 = \chi^2$		Layers (Params)
1 (32)	900.694		1 (32)
2 (64)	57.2672	-	-
3 (96)	0.0410	47.4841	2 (72)
4 (128)	0.0232	0.0371	3 (112)
5 (160)	0.0165	0.0216	4 (152)
7 (192)	0.0156	0.0160	5 (192)

Example of multi-flavour qPDF fits using both Ansatze:

Stage 2: qPDFs in a global fit

N3PDF

- N3PDF is a software used to extract PDFs from the experimental data at LHC
- N3PDF makes use of Neural Networks to model PDFs
- We have just replaced the NN with our quantum model
- The quantum PDF model needs less parameters in to provide comparable results
- The optimization procedure needs less iterations but a similar number of function evaluations

$$P = \int \mathrm{d}x_1 \,\mathrm{d}x_2 \,f_1^i(x_1, q^2) f_2^j(x_2, q^2) |M_{ij}(\{p_n\})|^2,$$

$$\chi^{2} = \sum_{i,j}^{N_{\text{dat}}} (D - P)_{i} \sigma_{ij}^{-1} (D - P)_{j},$$

N3PDF results

PDF with experimental data

N3PDF results

Experimental data

N3PDF results

Correlations

Some phenomenology

Channel	NNPDF3.1 NNLO	qPDF
ggH	$31.04\pm0.30~\rm{pb}$	$31.77\pm0.70~\rm{pb}$
$t\bar{t}H$	$0.446\pm0.003~\rm{pb}$	$0.465\pm0.015~\mathrm{pb}$
WH	$0.133\pm0.002~\rm{pb}$	$0.135\pm0.002~\rm{pb}$
ZH	$0.0181 \pm 0.0002 \; \rm pb$	$0.0183 \pm 0.0003 \; \mathrm{pb}$
VBF	$2.55\pm0.03~\mathrm{pb}$	$2.55\pm0.07~\mathrm{pb}$

Stage 3: qPDFs in a Q device

Real measurements from IBM Athens, 8k shots per x point:

Experiments on a quantum computer

Simulated measurements with noise for IBM Melbourne:

Conclusions

- The quantum model with data re-uploading provides enough flexibility to fit PDFs
- This model provides fittings in agreement with experimental data
- The model can be successfully integrated in a general PDF calculator, N3PDF
- Quantum PDF model is successful when tested against phenomenological results
- Noise levels from current quantum computers are not enough to maintain the accuracy of this model

Thank you for your attention.

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.

$$U(\vec{\alpha}) = U_n \dots U_2 U_1$$

$$U_1$$

$$U_1$$

$$U_2$$

$$U_4$$

Near optimal solution

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.

$$U(\vec{\alpha}) = U_n \dots U_2 U_1$$

$$U_1$$

$$U_2$$

$$U_4$$

Idea:

Quantum Computer is a machine that generates variational states.

⇒ Variational Quantum Computer!

Let $\{U_i\}$ be a dense set of unitaries. Define a circuit approximation to V:

$$|U_k \dots U_2 U_1 - V| < \delta$$

Scaling to best approximation

$$k \sim \mathcal{O}\left(\log^c \frac{1}{\delta}\right)$$

where c < 4.

 \Rightarrow The approximation is efficient and requires a finite number of gates.