Towards Quantum Machine Learning

Stefano Carrazza

19th October 2020, QTI TH meeting, CERN.

Università degli Studi di Milano, INFN Milan, CERN, TII

Introduction

NISQ era

⇒ We are in a Noisy Intermediate-Scale Quantum era ←

How can we contribute?

- Develop new algorithms
 - ⇒ using classical simulation of quantum algorithms
- Adapt problems and strategies for current hardware
 - ⇒ hybrid classical-quantum computation

Quantum Algorithms

There are three families of algorithms:

Gate Circuits

- Search (Grover)
- QFT (Shor)
- Deutsch

Variational (AI inspired)

- Autoencoders
- Eigensolvers
- Classifiers

Annealing

- Direct Annealing
- Adiabatic Evolution
- QAOA

Variational Quantum Circuits

Getting inspiration from **AI**:

- Supervised Learning \Rightarrow Regression and classification
- Unsupervised Learning ⇒ Generative models, autoencoders
- Reinforcement Learning \Rightarrow Quantum RL / Q-learning

Variational Quantum Circuits

Getting inspiration from **AI**:

- Supervised Learning \Rightarrow Regression and classification
- Unsupervised Learning ⇒ Generative models, autoencoders
- Reinforcement Learning ⇒ Quantum RL / Q-learning

Define new parametric model architectures for quantum hardware:

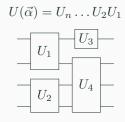
⇒ Variational Quantum Circuits

Rational

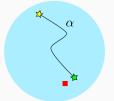
Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.



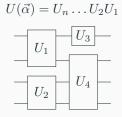
Near optimal solution



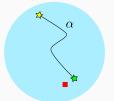
Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states \rightarrow explore a large Hilbert space.



Near optimal solution



Idea:

Quantum Computer is a machine that generates variational states.

⇒ Variational Quantum Computer!

Solovay-Kitaev Theorem

Let $\{U_i\}$ be a dense set of unitaries. Define a circuit approximation to V:

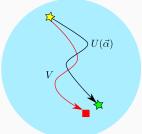
$$|U_k \dots U_2 U_1 - V| < \delta$$

Scaling to best approximation

$$k \sim \mathcal{O}\left(\log^c \frac{1}{\delta}\right)$$

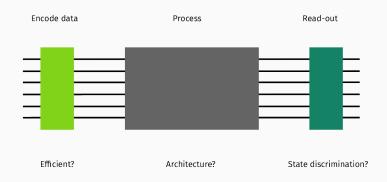
where c < 4.

Optimal solution



⇒ The approximation is efficient and requires a finite number of gates.

Many unexplored options



Add data in the course of computation?

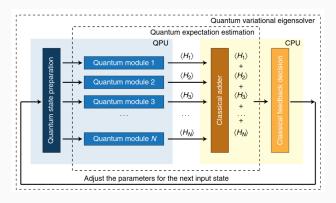
Example 1: VQE

Variational Quantum Eigensolvers (VQE)

Aspuru-Guzik et al., IBM, Zapata, Blatt.

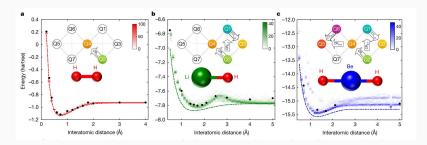
VQE is hybrid classical-quantum algorithm.

- 1. Define an optimization problem, e.g. energy, correlations, etc.
- 2. Apply "machine learning" on circuit design.



Variational Quantum Eigensolvers (VQE)

First successful applications in quantum chemistry:

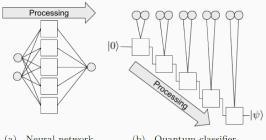


Example 2: Quantum Classifier

Data re-uploading strategy

Pérez-Salinas et al. [arXiv:1907.02085]

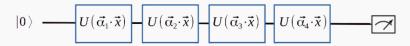
Encode data directly "inside" circuit parameters:



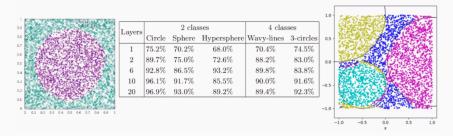
Neural network

(b) Quantum classifier

Data re-uploading strategy



D dimensional via re-uploading K categories via final measurement



Data re-uploading strategy

Problem	Classical classifiers		Quantum classifier	
	NN	SVC	χ_f^2	χ^2_{wf}
Circle	0.96	0.97	0.96	0.97
3 circles	0.88	0.66	0.91	0.91
Hypersphere	0.98	0.95	0.91	0.98
Annulus	0.96	0.77	0.93	0.97
Non-Convex	0.99	0.77	0.96	0.98
Binary annulus	0.94	0.79	0.95	0.97
Sphere	0.97	0.95	0.93	0.96
Squares	0.98	0.96	0.99	0.95
Wavy Lines	0.95	0.82	0.93	0.94

Table 5: Comparison between single-qubit quantum classifier and two well-known classification techniques: a neural network (NN) with a single hidden layer composed of 100 neurons and a support vector classifier (SVC), both with the default parameters as defined in scikit-learn python package. We analyze nine problems: the first four are presented in Section 6 and the remaining five in Appendix B. Results of the single-qubit quantum classifier are obtained with the fidelity and weighted fidelity cost functions, χ^2_T and χ^2_{hf} defined in Eq. (7) and Eq. (9) respectively. This table shows the best success rate, being 1 the perfect classification, obtained after running ten times the NN and SVC algorithms and the best results obtained with single-qubit classifiers up to 10 layers.

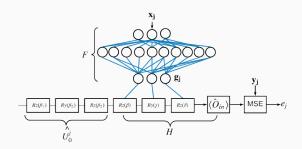
Example 3: ML to Quantum

VQE with reinforcement learning

A. Garcia-Saez, J. Riu [arXiv:1911.09682], Google [arXiv:2003:02989]

Strategies:

- Use Reinforcement Learning to tune VQE circuits.
- Use DL for variational circuit tune and data pre-post processing.



Code tutorials

Qibo applications and tutorial

• VQE-like examples:

- Scaling of VQE for condensed matter systems
- Variational Quantum Classifier
- Data reuploading for a universal quantum classifier
- Quantum autoencoder for data compression
- Measuring the tangle of three-qubit states
- Quantum autoencoders with enhanced data encoding (New!)

See: https://qibo.readthedocs.io/en/latest/applications.html

Thank you for your attention.