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Introduction



= We are in a Noisy Intermediate-Scale Quantum era <

How can we contribute?

e Develop new algorithms
= using classical simulation of quantum algorithms

e Adapt problems and strategies for current hardware
= hybrid classical-quantum computation



Quantum Algorithms

There are three families of algorithms:

Gate Circuits Variational (Al inspired)
e Search (Grover) e Autoencoders
e QFT (Shor) e Eigensolvers
e Deutsch e Classifiers

Direct Annealing
Adiabatic Evolution
QAOA



Variational Quantum Circuits

Getting inspiration from Al:

e Supervised Learning = Regression and classification
e Unsupervised Learning =- Generative models, autoencoders

e Reinforcement Learning = Quantum RL / Q-learning



Variational Quantum Circuits

Getting inspiration from Al:

e Supervised Learning = Regression and classification
e Unsupervised Learning =- Generative models, autoencoders

e Reinforcement Learning = Quantum RL / Q-learning

Define new parametric model architectures for quantum hardware:

= Variational Quantum Circuits



Rational



Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states — explore a large Hilbert space.

v@)=U,...UU; Near optimal solution
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Rational for Variational Quantum Circuits

Rational:

Deliver variational quantum states — explore a large Hilbert space.
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Idea:

Quantum Computer is a machine that generates variational states.

= Variational Quantum Computer!



Solovay-Kitaev Theorem

Let {U;} be a dense set of unitaries.

Define a circuit approximation to V: Optimal solution

‘Uk...UQUl_V|<(S

U(@)
Scaling to best approximation

1
k~QO (logc 5)

where ¢ < 4.

= The approximation is efficient and requires a finite number of gates.



Many unexplored options

Encode data Process Read-out

Efficient? Architecture? State discrimination?

Add data in the course of computation?



Example 1: VQE




Variational Quantum Eigensolvers (VQE)

Aspuru-Guzik et al., IBM, Zapata, Blatt.
VQE is hybrid classical-quantum algorithm.

1. Define an optimization problem, e.g. energy, correlations, etc.
2. Apply "machine learning* on circuit design.
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Variational Quantum Ei

First successful applications in quantum chemistry:
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Example 2: Quantum Classifier




Data re-uploading strategy

Pérez-Salinas et al. [arXiv:1907.02085]

Encode data directly “inside” circuit parameters:

Processmg
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(a) Neural network (b) Quantum classifier



Data re-uploading strategy

-

0) — U (@ X) HU(6»X)HU(d%) H U(d,:

s

D dimensional via re-uploading
K categories via final measurement

2 classes 4 clas:

Circle Sphere Hypersphere| Wavy-lines 3-circles
75.2% T70.2% 68.0% 70.4% 74.5%
89.7% 75.0% 72.6% 88.2% 83.0%
92.8% 86.5% 93.2% 89.8% 83.8%
91. 85.5% 90.0% 91.6%

93.0% 89.2% 89.4%
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Problem

Classical classifiers

Quantum classifier

NN SVC X} Xt

Circle 0.96 0.97 0.96 0.97

3 circles 0.88 0.66 0.91 0.91
Hypersphere 0.98 0.95 0.91 0.98
Annulus 0.96 0.77 0.93 0.97
Non-Convex 0.99 0.77 0.96 0.98
Binary annulus | 0.94 0.79 0.95 0.97
Sphere 0.97 0.95 0.93 0.96
Squares 0.98 0.96 0.99 0.95
‘Wavy Lines 0.95 0.82 0.93 0.94

Table 5: Comparison between single-qubit quantum classifier and two well-known classical classification techniques: a neural
network (NN) with a single hidden layer composed of 100 neurons and a support vector classifier (SVC), both with the default
parameters as defined in scikit-1learn python package. We analyze nine problems: the first four are presented in Section 6
and the remaining five i in Appendlx B. Results of the single-qubit quantum classifier are obtained with the fidelity and weighted
fidelity cost functions, )(j and >(“,- defined in Eq. (7) and Eq. (9) respectively. This table shows the best success rate, being
1 the perfect classification, obtained after running ten times the NN and SVC algorithms and the best results obtained with

single-qubit classifiers up to 10 layers.
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Example 3: ML to Quantum




VQE with reinforcement learning

A. Garcia-Saez, J. Riu [arXiv:1911.09682], Google [arXiv:2003:02989]

Strategies:
e Use Reinforcement Learning to tune VQE circuits.

e Use DL for variational circuit tune and data pre-post processing.
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Code tutorials




Qibo applications and tutorial

o VQE-like examples:

e Scaling of VQE for condensed matter systems
Variational Quantum Classifier

Data reuploading for a universal quantum classifier

e Quantum autoencoder for data compression

e Measuring the tangle of three-qubit states

e Quantum autoencoders with enhanced data encoding (New!)

See: https://qibo.readthedocs.io/en/latest/applications.html
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https://qibo.readthedocs.io/en/latest/applications.html

Thank you for your attention.
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