
Quantum simulation with hardware acceleration (arXiv:2009.01845)

Stefano Carrazza

25th September 2020, Center for Quantum Technologies (CQT), Singapore.

Università degli Studi di Milano, INFN Milan, TII

https://arxiv.org/abs/2009.01845

Introducing Qibo

Introduction

From a practical point of view, we are moving towards new technologies,

in particular hardware accelerators:

Moving from general purpose devices ⇒ application specific

1

Context

Qibo is the open-source API for a new quantum hardware developed at:

⇒ Barcelona by UB, BSC, IFAE, QQT

⇒ Abu Dhabi by TII

Expected machines based on different technologies for multiple qubits.

2

Motivation

Why a quantum middleware?

Natural questions:

1 How to prepare and execute quantum algorithms?

2 How to make quantum hardware accessible to users?

3

The middleware definition

Computing framework

Development of a quantum computing

framework which encodes quantum

algorithms in a programming API.

Infrastructual setup

Development of an IT infrastructure

for users to execute and retrieve results

from quantum hardware using Qibo.

4

The Qibo framework

Qibo module design

Qibo is a general purpose quantum computing API specialized in:

• Model simulation on classical hardware: CPUs and GPUs

• Model execution on quantum hardware

Furthermore Qibo provides the possibility to:

• create a codebase for quantum algorithms

• mix classical and quantum algorithms
5

Qibo modules

Modules supported by Qibo 0.1.0:

Modules are designed to work on simulation and quantum hardware.

6

Qibo 0.1.0 main features

• Circuit-based quantum processors

• State wave-function propagation

• Controlled gates

• Measurements

• Density matrices and noise

• Callbacks

• Gate Fusion

• Distributed computation

• Variational Quantum Eigensolver

• Annealing quantum processors

• Time evolution of quantum states

• Adiabatic Evolution simulation

• Scheduling determination

• Trotter decomposition

• QAOA

Quantum autoencoders
Notes and Results

Carlos Bravo-Prieto

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

FIG. 1. Variational quantum ansatz for U(θ) employed
in our simulations. As indicated by the dashed box, each
layer is composed of CZ gates acting on alternating pairs
of neighboring qubits which are preceded by Ry(θi) qubit
rotations, Ry(θi) = e−iθiY/2. After implementing the
layered ansatz, a final layer of Ry(θi) qubit gates is ap-
plied. Here, it is shown the case of two layers and n = 6
qubits.

i~
∂

∂t
|ψ(t)〉 = H(s)|ψ(t)〉

7

Qibo technical aspects

1 efficient simulation engine for:

• multithreading CPU

• single-GPU

• multi-GPU

2 designed with modern standards:

• installers (pip install qibo)

• documentation

• unit testing

• continuous integration

3 released as an open-source code

https://qibo.science

8

https://qibo.science

Qibo language and technologies

Project statistics:

10’000 lines of code in Python/C++.

The current simulation engine is based on:

• TensorFlow 2:

• Representation of quantum states, density matrices and gates.

• Optimizes linear algebra operations on CPU/GPU.

• Introduces an abstraction interface to hardware implementation.

• Warning: requires custom operators and fine tuning for efficiency.

• Numpy/Scipy: linear algebra object definition and optimizers.

• Joblib: manages the computation distribution on multi-GPU.

9

Circuit simulation with Qibo

Quantum circuit simulation

Qibo simulates the behaviour of quantum circuits using dense complex

state vectors ψ(σ1, σ2, . . . , σN) ∈ C in the computational basis where

σi ∈ {0, 1} and N is the total number of qubits in the circuit.

The final state of circuit evaluation is given by:

ψ′(σ) =
∑
σ′

G(σ,σ′)ψ(σ1, . . . σ
′
i1 , . . . , σ

′
iNtargets

, . . . , σN),

where the sum runs over qubits targeted by the gate.

• G(σ,σ′) is a gate matrix which acts on the state vector.

• ψ(σ) from a simulation point of view is bounded by memory.

10

Some useful quantum gates

Rotations around the axis of the Bloch sphere:

Rx(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
, Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)

The controlled-phase gate and Hadamard:

Cz =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , H =
1√
2

(
1 1

1 −1

)

Others examples are: Pauli X/Y/Z, Toffoli, Identity, Controlled-Not.

11

Quantum Fourier Transform

• The QFT is defined as:

|x〉 → 1√
N

N−1∑
k=0

wxkN |k〉

• The QFT can be represented by the circuit design:

12

Benchmark configuration

We benchmark Qibo with the following libraries:

All computations are performed on the NVIDIA DGX workstation.

• GPUs: 4x NVIDIA Tesla V100 with 32GB

• CPU: Intel Xeon E5 with 20 cores with 256 GB of RAM

13

QFT benchmark

5 10 15 20 25 30 35
Number of Qubits

10-3

10-2

10-1

100

101

102

103

104

To
tal

 ti
m

e (
se

c)

QFT (complex64)
Qibo (GPU)
Qibo (multi-GPU)
Qibo (CPU)
Qibo (CPU-1)
QCGPU (GPU)
QCGPU (CPU)
Cirq (CPU)
TFQ (CPU)

10 20 30
Number of Qubits

2

4

Ra
tio

 to
 Q

ib
o

(G
PU

)

10 20 30
Number of Qubits

100

101

Ra
tio

 to
 Q

ib
o

(C
PU

)

5 10 15 20 25 30
Number of Qubits

10-3

10-1

101

103

To
tal

 ti
m

e (
se

c)

QFT (complex128)
Qibo (GPU)
Qibo (multi-GPU)
Qibo (CPU)
Qibo (CPU-1)
Qulacs (GPU)
Qulacs (CPU)
IntelQS (CPU)
Qiskit (CPU)
PyQuil (CPU)

10 20 30
Number of Qubits

0

2

4

Ra
tio

 to
 Q

ib
o

(G
PU

)
10 20 30

Number of Qubits

10-1

101

Ra
tio

 to
 Q

ib
o

(C
PU

)

Quantum Fourier Transform simulation performance comparison in single

precision (left) and double precision (right).

14

Variational circuit

Variational circuits are inspired by the structure of variational circuits

used in quantum machine learning.

Standard Circuit Gate fusion

Quantum autoencoders
Notes and Results

Carlos Bravo-Prieto

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

Ry • Ry •

FIG. 1. Variational quantum ansatz for U(θ) employed
in our simulations. As indicated by the dashed box, each
layer is composed of CZ gates acting on alternating pairs
of neighboring qubits which are preceded by Ry(θi) qubit
rotations, Ry(θi) = e−iθiY/2. After implementing the
layered ansatz, a final layer of Ry(θi) qubit gates is ap-
plied. Here, it is shown the case of two layers and n = 6
qubits.

Qibo implements the gate fusion of four Ry and the controlled-phased

gate, Cz ⇒ applies them as a single two-qubit gate.

15

Variational circuit benchmark

5 10 15 20 25 30 35
Number of Qubits

10-2

10-1

100

101

102

103

104

To
tal

 ti
m

e (
se

c)

Variational 5 layers (complex64)
Qibo (GPU)
Qibo (CPU)
Qibo (CPU-1)
QCGPU (GPU)
QCGPU (CPU)
Cirq (CPU)
TFQ (CPU)

10 20 30
Number of Qubits

2

4

Ra
tio

 to
 Q

ib
o

(G
PU

)

10 20 30
Number of Qubits

100

101

102

Ra
tio

 to
 Q

ib
o

(C
PU

)

5 10 15 20 25 30
Number of Qubits

10-3

10-1

101

103

To
tal

 ti
m

e (
se

c)

Variational 5 layers (complex128)
Qibo (GPU)
Qibo (CPU)
Qibo (CPU-1)
Qulacs (GPU)
Qulacs (CPU)
IntelQS (CPU)
Qiskit (CPU)
PyQuil (CPU)

10 20 30
Number of Qubits

0

2

4

6

Ra
tio

 to
 Q

ib
o

(G
PU

)
10 20 30

Number of Qubits

10-1

101

Ra
tio

 to
 Q

ib
o

(C
PU

)

Variational circuit simulation performance comparison in single precision (left)

and double precision (right).

16

Single vs double precision simulation

5 10 15 20 25 30 35
Number of Qubits

10-2

10-1

100

101

102

103

To
tal

 T
im

e (
se

c)

GPU c64
GPU c128
CPU c64
CPU c128

10 20 30
Number of Qubits

1.0

1.5

2.0

Ra
tio

 to
 G

PU
 c6

4

10 20 30
Number of Qubits

1.0

1.5

2.0

Ra
tio

 to
 C

PU
 c6

4

Comparison of simulation time when using single (complex64) and double

(complex128) precision on GPU and multi- threading (40 threads) CPU.

17

Measurement simulation

Qibo simulates quantum measurements using its standard dense state

vector simulator, followed by sampling from the distribution

corresponding to the final state vector.

101 102 103 104 105 106

Number of shots

10-3

10-2

10-1

100

101

To
tal

 ti
m

e (
se

c)

DGX CPU
N= 10

N= 12

N= 14

N= 16

N= 18

N= 20

N= 22

N= 24

N= 26

N= 28

N= 30

101 102 103 104 105 106

Number of shots

10-3

10-2

10-1

100

101

To
tal

 ti
m

e (
se

c)

DGX V100
N= 10

N= 12

N= 14

N= 16

N= 18

N= 20

N= 22

N= 24

N= 26

N= 28

N= 30

Example of measurement shots simulation on CPU (left) and GPU (right).

18

Hardware configurations - large circuits

25 26 27 28 29 30 31 32 33
Number of Qubits

100

101

102

103

104

Ti
m

e (
se

c)

2x 2x 2x
2x

2x
2x

2x
4x

2x4

1-thread
10-threads
20-threads
40-threads
single-GPU
multi-GPU

Comparison of Qibo performance for QFT on multiple hardware configurations.

For the multi-GPU setup we include a label on top of each histogram bar

summarizing the effective number of NVIDIA V100 cards used during the

benchmark.

19

Hardware configurations - small circuits

14 15 16
Number of Qubits

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Ti
m

e (
se

c)

1-thread
40-threads
single-GPU

Comparison of Qibo performance for small QFT circuits on single thread CPU,

multi-threading CPU and GPU. Single thread CPU is the optimal choice for up

to 15 qubits.

20

Annealing with Qibo

State evolution

Qibo can be used to simulate a unitary time evolution of quantum states.

i∂t |ψ(t)〉 = H |ψ(t)〉

Given an initial state vector |ψ0〉 and an evolution Hamiltonian H, the

goal is to find the state |ψ(T)〉 after time T , so that the time-dependent

Schrödinger equation:

21

Adiabatic evolution

Example for adiabatic quantum computation:

Lets consider the evolution Hamiltonian:

H(t) = (1− s(t))H0 + s(t)H1,

where

• H0 is a Hamiltonian whose ground state is easy to prepare and is

used as the initial condition,

• H1 is a Hamiltonian whose ground state is hard to prepare

• s(t) is a scheduling function.

According to the adiabatic theorem, for proper choice of s(t) and total

evolution time T , the final state |ψ(T)〉 will approximate the ground

state of the “hard” Hamiltonian H1.

22

Adiabatic evolution

Lets consider the critical transverse field Ising model as the “hard”

Hamiltonian:

H0 = −
N∑
i=0

Xi, H1 = −
N∑
i=0

(ZiZi+1 +Xi)

where Xi and Zi represent the matrices acting on the i-th qubit.

Example with linear scheduler s(t):

23

Adiabatic evolution

Qibo uses two different methods to simulate time evolution:

• The first method requires constructing the full 2N × 2N matrix of H

and uses an ordinary differential equation (ODE) solver to calculate

the evolution operator e−iHδt for a single time step δt and applies it

to the state vector via the matrix multiplication

|ψ(t+ δt)〉 = e−iHδt |ψ(t)〉

• The second time evolution method is based on the Trotter

decomposition where local Hamiltonians that contain up to k-body

interactions, the evolution operator e−iHδt can be decomposed to

2k × 2k unitary matrices and therefore time evolution can be

mapped to a quantum circuit consisting of k-qubit gates.

24

Adiabatic evolution

Qibo uses two different methods to simulate time evolution:

• The first method requires constructing the full 2N × 2N matrix of H

and uses an ordinary differential equation (ODE) solver to calculate

the evolution operator e−iHδt for a single time step δt and applies it

to the state vector via the matrix multiplication

|ψ(t+ δt)〉 = e−iHδt |ψ(t)〉

• The second time evolution method is based on the Trotter

decomposition where local Hamiltonians that contain up to k-body

interactions, the evolution operator e−iHδt can be decomposed to

2k × 2k unitary matrices and therefore time evolution can be

mapped to a quantum circuit consisting of k-qubit gates.

24

Adiabatic evolution

5 10 15 20 25 30
Number of Qubits

10-1

100

101

102

103

104

To
tal

 ti
m

e (
se

c)

TFIM Adiabatic Evolution (δt= 0.01, T= 1, complex128)

Trotter (GPU)
Trotter (multi-GPU)
Trotter (CPU)
Exp (GPU)
Exp (CPU)
RK4 (GPU)
RK4 (CPU)
Trotter RK4 (GPU)
Trotter RK4 (CPU)

10 20 30
Number of Qubits

100

101

102

103

Ra
tio

 to
 T

ro
tte

r (
GP

U)

10 20 30
Number of Qubits

101

103

Ra
tio

 to
 T

ro
tte

r (
CP

U)

Adiabatic evolution performance using Qibo and TFIM for extact and Trotter

solution.

25

Scheduling optimization

Example of TFIM scheduling optimization (hybrid algorithm).

Optimization of a polynomial s(t) and final T is performed using classical

algorithms while the evolution could be performed by the quantum device.

26

Applications and tutorials

Qibo applications and tutorial

• Variational circuits

• Scaling of variational quantum circuit depth for condensed matter

systems

• Variational Quantum Classifier

• Data reuploading for a universal quantum classifier

• Quantum autoencoder for data compression

• Measuring the tangle of three-qubit states

• Grover’s algorithm

• Grover’s Algorithm for solving Satisfiability Problems

• Grover’s Algorithm for solving a Toy Sponge Hash function

• Adiabatic evolution

• Simple Adiabatic Evolution Examples

• Adiabatic evolution for solving an Exact Cover problem

• Quantum Singular Value Decomposer

• Quantum unary approach to option pricing

See: https://qibo.readthedocs.io/en/latest/applications.html

27

https://qibo.readthedocs.io/en/latest/applications.html

Outlook

Outlook

An efficient hardware accelerated framework for quantum simulation, for

the following models:

5 10 15 20 25 30 35
Number of Qubits

10-3

10-2

10-1

100

101

102

103

104

To
tal

 ti
m

e (
se

c)

QFT (complex64)
Qibo (GPU)
Qibo (multi-GPU)
Qibo (CPU)
Qibo (CPU-1)
QCGPU (GPU)
QCGPU (CPU)
Cirq (CPU)
TFQ (CPU)

10 20 30
Number of Qubits

2

4

Ra
tio

 to
 Q

ib
o

(G
PU

)

10 20 30
Number of Qubits

100

101

Ra
tio

 to
 Q

ib
o

(C
PU

)
28

Thank you for your attention.

28

	Introducing Qibo
	The Qibo framework
	Circuit simulation with Qibo
	Annealing with Qibo
	Applications and tutorials
	Outlook

